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Abstract

A new neural network architecture (PART) and the resulting algorithm are proposed to find projected clusters for data sets in high
dimensional spaces. The architecture is based on the well known ART developed by Carpenter and Grossberg, and a major modification
(selective output signaling) is provided in order to deal with the inherent sparsity in the full space of the data points from many data-mining
applications. This selective output signaling mechanism allows the signal generated in a node in the input layer to be transmitted to a node in
the clustering layer only when the signal is similar to the top-down weight between the two nodes and, hence, PART focuses on dimensions
where information can be found. Illustrative examples are provided, simulations on high dimensional synthetic data and comparisons with
Fuzzy ART module and PROCLUS are also reported. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Most clustering algorithms do not work efficiently for
data sets in high dimensional spaces because of the inherent
sparsity of data. In such data sets, for any given pair of
points there exist at least a few dimensions on which the
points are far apart from one another. Therefore, it is not
feasible to find interesting clusters in the original full space
of all dimensions. Consequently, a clustering algorithm is
often preceded by feature selection whose goal is to find the
particular dimensions on which points in the data set are
correlated. Unfortunately, a feature selection procedure
requires picking up certain dimensions in advance, which
can lead to a significant loss of information. As a result, the
clustering results preceded by a feature selection procedure
may not be reliable. This reliability problem becomes even
worse in some data mining applications where some points
are correlated with respect to a given set of dimensions and
others are correlated with respect to different sets of dimen-
sions and, therefore, it may not always be possible to prune
off dimensions without, at the same time, failing to find all
interesting features and clusters.

Therefore, we are facing a feasibility—reliability dilemma
in clustering data sets of high dimensionality: on the one
hand it is feasible to find clusters only in lower dimensional
subspaces due to the sparsity of the data in full space; on the
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other hand, the clustering results by pruning off dimensions
in advance are not reliable due to the loss of information.
This feasibility—reliability dilemma motivated the concept
of projected clustering (Aggarwal, Procopiuc, Wolf, Yu &
Park, 1999) whose central goal is to find projected clusters,
each of which consists of a subset C of data points together
with a subset D of dimensions such that the points in C are
closely correlated in the subspace of dimensions D. The idea
here is to find desired clusters based not only on points, but
also on dimensions. For data sets in high dimensional
spaces, projected clustering can lead to significant improve-
ment in the quality of clustering. A fast projected clustering
algorithm PROCLUS was proposed by Aggarwal et al.
(1999). The algorithm finds the appropriate sets of candidate
clusters and dimensions by using the so-called medoids
technique which uses points (medoids) in the original data
set to serve as surrogate centers for clusters. In addition, the
greedy technique and a locality analysis are used to find the
set of dimensions associated with each medoid. Unfortu-
nately, PROCLUS requires the number of clusters and the
average dimension as input parameters. This seems to
impose significant challenge for a user. Moreover, as the
illustrative simulations in Section 4 show, PROCLUS is
sensitive to the choice of these input parameters.

Here, we present an alternative approach based on a new
neural network architecture PART (Projective Adaptive
Resonance Theory). The basic architecture of PART is simi-
lar to that of ART neural networks which have been shown
to be very effective in self-organizing stable recognition
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Fig. 1. Simplified configuration of ART architecture consisting of an input
layer F, a clustering layer F, and a reset subsystem.

codes in real time in response to arbitrary sequences of input
patterns (for example, Carpenter & Grossberg, 1987a,b,
1990; Carpenter, Grossberg & Reynolds, 1991; Carpenter,
Grossberg & Rosen, 1991a,b; Carpenter, Grossberg,
Markuzon, Reynolds & Rosen, 1992). Fig. 1 shows the
simplified configuration of the ART structure, which
involves an input processing field (F, layer, also called
input layer or comparison layer), a clustering field (F,
layer, also called clustering layer or recognition layer),
and a reset subsystem. There are two sets of connections
(each with its own weights) between each node in the F;
layer and each node in the F, layer. The F; layer is
connected to the F, layer by bottom-up weights while the
F, layer is connected to the F| layer by top-down weights.
The connection weights between these two layers can be
modified according to two different learning rules. The F,
layer is a competitive layer which follows the winner-take-
all paradigm: the node in the F, with the largest net input
becomes the candidate to learn the input pattern. Whether
the candidate will learn the input pattern is decided by the
reset mechanism, which controls the degree of similarity of
patterns placed in the same node (cluster).

Despite the great success of applying ART to clustering
problems, our simulations reported below show that the
current ART architecture has to be modified to perform
the task of projected clustering. In particular, ART focuses
on the similarity of patterns in full space and, therefore,
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Fig. 2. PART architecture. In addition to the usual F; layer (input and
comparison), F, layer (clustering) and a reset mechanism, there is a hidden
layer associated with each F layer node v; for similarity check to determine
whether the node v; is active relative to an F, layer node v;.

may have difficulty in finding projected clusters in high
dimensional data sets due to the inherent sparsity of the
data points in the full space. Besides, pre-processing of
the input patterns to an ART system is nontrivial. In parti-
cular, for analog input patterns, a user faces the problem of
meeting the data normalization requirements of ART
modules, and simultaneously preserving the original
projected clusters in subspaces. Another problem common
to all clustering methods is that the subspace of dimensions
associated with each projected cluster cannot be identified
in advance. One may attempt to find clusters in all possible
subspaces and then to compare the results to obtain an opti-
mal partition of the data set, but this is practically not feasi-
ble as the number of all possible subspaces 2™ — 1 is
intractably large for a data set with high dimension m.

Similar to ART architecture, the F, layer of our proposed
PART is a competitive layer which follows the winner-take-
all paradigm. Recall that a node of the F, layer is called
committed if it has learned some input patterns in previous
learning traces, and a node is called noncommitted if it has
not learned any input pattern. In PART architecture, only
the committed nodes of the F), layer accept signals from the
F, layer at the phase of competition, the noncommitted
nodes do not take part in the competition. A noncommitted
node will automatically become the winner if no proper
committed nodes can be chosen.

The principal difference between PART and ART is in
the F layer. In PART, the F layer selectively sends signals
to nodes in the F, layer. In other words, a node in the F
layer can be active relative to some F, nodes, but inactive
relative to other F, nodes. To which F, node an F; node is
active is determined by a similarity test between the corre-
sponding top-down weight and the signal generated in the F
node. This similarity test plays a key role in the projected
clustering of PART.

The remaining part of this paper is organized as follows.
Section 2 describes the PART architecture and the STM and
LTM equations, as well as the vigilance and reset mechan-
ism. Section 3 describes the projected clustering algorithm
according to PART model. Section 4 presents illustrative
examples, simulation results on high dimensional synthetic
data, and comparisons with Fuzzy ART and PROCLUS.
Section 5 provides some concluding remarks.

2. Projective adaptive resonance theory
2.1. Basic architecture of PART

Fig. 2 illustrates the basic PART architecture. Here, we
denote the nodes in the F layer by v;, i = 1, ..., m; nodes in
the F, layer by v;,j=m + 1, ..., m + n; the activation of an
F, node v; by x;, the activation of an F, node v; by x;; the
bottom-up weight from v; to v; by z;;, the top-down weight
(also called template) from v; to v; by z;;. The main difference
between PART and ART is the introduction of the selective
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output signal from a node v; in F; to a committed node v; in
F, by a similarity check between the top-down weight z;; and
the signal f(x;) generated in v;, where f] is a signal function.
More precisely, for an F| node v; and a committed F, node
v;, we define the selective output signal of node v; to node v;
by
hij = h(x;, zjj, ;i) = ho(f1(x), Zi)(z;7)s (1)
where
1 if d(a,b) = o,
hy(a,b) = 2
0 if d(a,b) > o,

with d(a, b) being a quasi-distance function (for example,

d(a, b)=|a — b| or |a — bl/(e + |b])), and
1 lf Zij > 0,
l(z;) = 3)
o ifz =6,

with 0 (threshold) being O or a small number to be specified
later, o is a distance parameter.

We say that v; is active to v; if h; = 1, and inactive to v; if
0.

2.2. STM equations

The STM equations for nodes in the F layer are simple,
and these equations incorporate the internal decay —x; as
well as the input [; to v; as follows:

dx;
L= —x,+ 1, 4
€& X T 1 “)
where 0 < e < 1.

The STM equations of the committed nodes in the F,
layer follow from the on-center off-surround principle in
ART (Carpenter & Grossberg, 1987a) and take the form

Y e h (- An — (Bt Co) 5
€q = 5T —Ag); =B+, ©)
where
J =) + T, 6)
=D g 7

k#j, v EF,

g is a signal function, and in contrast to ART, we have

Ti= > zjhy= ) zh(xiz2). ®)

v;EF, v;EF,
The F, layer makes a choice by winner-take-all paradigm:

1 if node vj is a winner,
frlxy) = )
! 0 otherwise.
The winning node v; is determined according to the follow-
ing rule: let I' = {T}:F, node v; is committed and has not
been reset on the current trial}, then node v; is a winner

either if I' # ¢ and T;=max[I’, or if I' = ¢ and node v; is
the next noncommitted node in F, layer.

According to Eq. (9), a winning F, node will become
active and all other F, nodes will become inactive.

2.3. LTM equations

The LTM trace of the bottom-up pathway from F node v;
to F; node v; and the LTM trace of the top-down pathway
from F, node v; to F; node v; obey the following learning
equations, respectively:

dZ,’j
0 dr =f2(xj)[(1 - Zij)Lh(xi,Ziszji)
—z > hOg g 5ol (10)
ki v EF,
de,’ . . .
m” = fr(xpl—z; + fi(x)] if v; is committed, (11)
de,' . . .
o ar = fL(xpl—z;; + fix)] if v; is noncommitted,  (12)

where 0 < € < § < 1, which sets up the order of various
learning rates: the STM traces are activated much faster
than all LTM traces, and the bottom-up LTM traces and
the top-down LTM traces for noncommitted nodes are
adjusted much faster than the top-down LTM traces for
committed nodes. In the above, f, is a signal function.
Note that if a noncommitted F, node v; becomes the winner,
then all F| nodes are active to the winner, that is, h,-j =
h(x;, zj, z;;) = 1 for all F nodes v;.

According to Eq. (10), we obtain

dr
(I = zpL — z;(X] = 1) if v; is active and v; is active to v;,
= = |Xlz; if v; is active, but v; is inactive to v,
0 if v; is inactive,

(13)

where |X| denotes the number of F| nodes which are active
to the F, node v;. Consequently, the bottom-up LTM traces
still obey the Weber Law and the Associative Decay Law
(Carpenter & Grossberg, 1987a).

Similarly, from Eqgs. (11) and (12), we derive that if an F,
node is committed, then

% _ =z + fi(x) .1f vj. 1s. acm./e, a4
dr 0 if v; is inactive;
and if an F, node is noncommitted, then
N ' e .
6% _ Zi T fi(x) .1f vj. 1s. actn./e, as)
dr 0 if v; is inactive.
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Fig. 3. PART tree architecture with increasing vigilance parameter,
po<pii» P21» --. <..., here all points in a cluster (node) v; of the F,
layer can be further classified according to a new vigilance pj; > po.

2.4. Vigilance and reset

As in ART, if a winning (active) F, node v; does not
satisfy some vigilance conditions, it will be reset so that
the node v; will always be inactive (or cannot become a
winner) during the remainder of the current trial.

The vigilance conditions in PART also control the degree
of similarity of patterns placed in the same cluster. The
major difference between PART and ART2 (Carpenter &
Grossberg, 1987b) is that the similarity measurement in
PART is closely related to subspaces involved. Namely,
for a winning committed F, node v;, define

=2 hy (16)

and we reset the winner v; if and only if
" <p a7

Here p € {1, 2, ..., m} is a vigilance parameter.

Note that in PART no vigilance and reset is assumed for a
noncommitted winning node during its learning. The degree
of similarity of patterns for a committed node is controlled
by not only vigilance parameter p, but also distance para-
meter o through Eqgs. (1) and (2). These two parameters
have different roles: the vigilance parameter p controls the
size of dimensions of the projected subspaces, and the
distance parameter o controls the degree of similarity in a
specific dimension involved.

2.5. The extension of PART architecture: PART tree

Fig. 3 illustrates the architecture of a PART tree. By

increasing the vigilance parameter, points in a cluster of
the F, layer can be further classified in terms of a new and
larger vigilance parameter. When this is done for each
cluster in the F, layer, we obtain a new F, layer consisting
of new sets of projected clusters. This process can be
continued for the new F, layer and, hence, we will obtain
a PART tree. A natural condition to stop this process is
when p > m or when no new subcluster can be formed.
Other practical stopping conditions will be discussed in
the next section. PART tree architecture reveals the
hierarchical relations of various projected clusters and is
useful for different purposes of the same user or for
different user groups.

3. Algorithms

This section describes the projected clustering
algorithms according to the PART model and PART
tree architecture.

F, activation and computation of ;. Here, we take func-
tion f; as the identical function fi(x;) = x;, and by Eq. (4),
x; = I; at an equilibrium. Therefore, from Eq. (1) we have

hij = h,(1;, Zji)l(Zij)- (18)

In what follows, we take the quasi-distance function in Eq.
(2) as

d(a,b) = |a — bll(e + |b]). (19)

F, activation and selection of winner. We compute the
input 7; to the committed F, node v; by Eq. (8), and then
select the winner according to the rules specified in Section
2.2.

Vigilance and reset. The algorithm uses the vigilance and
reset mechanism shown in Egs. (16) and (17). Namely,
winner v; is reset if and only if

Dy < p. (20)
for a vigilance parameter p € {1, 2, ..., m}.

Learning. The learning formulae follow from Eqgs. (13)-
(15). In particular, for the committed winning F, node v;
which has passed the vigilance test, we have

if F| node v; is active to v;,
ij

o LI(L— 1+ X))
Z.A =
0 if F| node v; is inactive to Vi,
(21)
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Table 1

List of parameters for the PART tree algorithm. (p, denotes the initial
vigilance of the PART tree architecture and p, denotes the vigilance
increment)

Parameter Permissible range Sample value

L L>1 2

Po l=py=m NA

Ph I=py=m—1 1

o =0 NA

o O=a=1 NA

0 0=0<LI(L—1+m) 0

e e=0 1

7 =1 - " + o, (22)

where 0 = a = 1 is the learning rate, |X| denotes the number
of elements in the set X = {i:h; = 1}.

For a noncommitted winner v;, and for every F; node v;,
we have

2= LAL — 1+ m), (23)
4 =1, (24)

Dimensions of projected clusters. Each committed F,
node v; represents a projected cluster C;. The set D; of the
associated dimensions of the projected cluster C; is deter-
mined by /(z;) according to the following formula

The dimension i € D; if and only if /(z;) = 1. 25)

Outlier node. Theoretically, the F, layer can have
arbitrarily many nodes in PART architecture. Therefore, it
can classify arbitrarily many input patterns. However, due to
the restriction of resource, the number of nodes in the F,
layer has to be limited. On the other hand, in many cluster-
ing problems, there are always some data points (called
outliers) which do not cluster well. Therefore, we add a
new special node in basic PART module, called outlier
node. We simply put into the outlier node all data points
that cannot be clustered into F, nodes (V,,, 41, Viy+2s --+s Viptn)-
The outlier node is treated as a sole container of outliers and
it does not learn any new data pattern. Note that PART tree
architecture consists of some basic PART modules. There-
fore, there is an outlier node for each basic PART module in
a PART tree. Although the outlier node in a given module
does not learn any new data pattern, in a PART tree an
outlier node inherits the pattern of its parent in the lower
clustering level. Note also that the data points in an outlier
node can be further classified in the next clustering level of a
PART tree (see Part tree algorithm below).

While the aforementioned algorithms based on basic

PART architecture are sufficient for many clustering
problems, we believe that an algorithm based on
PART tree architecture is particularly useful when
users want to find more information about the hierarch-
ical relations of projected clusters. For this purpose, we
provide below an algorithm designed according to PART
tree architecture. We should emphasize that this algo-
rithm reduces to the basic PART architecture algorithm
if we do not increase the vigilance p and if we do Steps
3-7 only one time.

PART tree algorithm.

0. Initialization:

Number m of nodes in F; layer: = number of dimen-
sions in the input vector

Number n of nodes in F, layer: = expected maximum
number of clusters that can be formed at each cluster-
ing level.

Initialize parameters L, py, p;, 0, «, 0, and e.

1. Set p = py.

2. Repeat Steps 3-7 until the stopping condition is

satisfied.

3. Set all F, nodes as being noncommitted.

4. For each input vector in data set S, do Steps 4.1-4.6.
4.1. Compute h;; for all Fy nodes v; and committed F,
nodes v;. If all F, nodes are noncommitted, go to Step
4.3.

4.2. Compute T; for all committed F, nodes v;.

4.3. Select the winning F, node v;. If no F, node can be
selected, put the input data into outlier O and then
continue to do Step 4.

4.4. If the winner is a committed node, compute 7,
otherwise go to Step 4.6.

4.5.If r; = p, go to Step 4.6, otherwise reset the winner
v, and go back to Step 4.3.

4.6. Set the winner v; as the committed, and update the
bottom-up and top-down weights for winner node v;.
5. Repeat Step 4 N times until stable clusters are formed
(i.e. until the difference of output clusters at N-th and

(N — 1)-th time becomes sufficiently small).

6. For each cluster C; in F, layer, compute the associated

dimension set D;. Then, set § = C;and set p = p + p, (or

p = |Dj| + py), go back to Step 2.

7. For the outlier O, set S = O, go back to Step 2.

Table 1 gives the permissible range and the suggested
sample values of parameters in the above PART tree
algorithm.

For large data sets, some random data points may be
correlated in several dimensions. However, it is very un-
likely that a large number of random data points are corre-
lated in a large set of dimensions. Therefore, we should
choose pg large enough to eliminate the randomness, but
smaller than or equal to the number of dimensions of any
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Fig. 4. Part simulation for a data set of eight patterns, where po =1, p,= 1,0 =0.1,L=2,e =1, @ = 0.1, # = 0. The data points below the delimitation line
in each rectangular box represent the projected subspaces associated with each cluster. 1 denotes the corresponding dimension is in the associated subspace,

and 0 denotes the corresponding dimension is not in the associated subspace.

possible projected cluster. As we do not know in advance
the numbers of dimensions of projected clusters, we should
choose pg as small as possible, but large enough to eliminate
the randomness.

As we mentioned earlier, a natural stopping condition for
the above PART tree algorithm is when p > m or when no
new subcluster can be formed. However, such a condition is
usually too restrictive, and a practical stopping condition
should be specified in terms of the particular applications.
For example, one may choose to specify a threshold for the
minimum number of data points in each cluster and stop
classifying a cluster further if the number of its data points
falls below this threshold. Users may also set the stopping
condition as when the vigilance p becomes larger than a
chosen threshold.

4. Simulations and comparisons
4.1. Two illustrative simulations

For the purpose of illustration, we designed a few small

sets of data points which form clusters only in subspaces of
lower dimensions. The simulation summarized in Fig. 4
illustrates how the PART tree algorithm classifies a data
set with eight input patterns. Clearly, the PART tree algo-
rithm gives a cluster tree which shows each projected cluster
and the associated feature, as well as the hierarchical rela-
tions of these projected clusters.

Table 2 shows the clustering results by applying ART2-A
(Carpenter, Grossberg & Rosen, 1991a) to the above data
set. Table 3 shows the clustering results by applying ART2-
A to the same data set, but with the pre-process of data by
the Dayhoff method (Dayhoff, 1990; Fausett, 1994) so that
the new data vectors have the same norms by adding an
extra component to each data vector. Note that ART2
focuses on similarity of points in the full space and, thus,
we failed to use the ART2-A algorithm to find the correct
projected clusters in this particular data set where dimension
similarity is the unique and essential pattern.

Table 4 shows the clustering results of applying
PROCLUS (Aggarwal et al., 1999) to the above data set.
Evidently, the clustering results depend on the choice of the
number of clusters k and the average dimension /. In most
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Table 2

Simulation by ART2-A for a data set of eight patterns, where vigilance
p=0.8,0.9, 095, 0.99, respectively. The learning rate is 0.1, and the
threshold 0 = 0.05. The data in the same cell are in a cluster

p=09 p =095 p =099

1 23 0 1 2 3 0 1 2 3 0 1 2 3 0

applications, finding the appropriate number of clusters and
average dimension in advance imposes significant challenge
for the user. Note that in PART there is no need to input
these parameters.

Fig. 5 shows another PART simulation which classifies a
data set with 12 input patterns.

4.2. Simulations on high dimensional data

This subsection describes our experimental results on
high dimensional synthetic data, generated via the method
introduced by Aggarwal et al. (1999). For the convenience
of readers, we briefly describe this data generation method
below and we refer to Aggarwal et al. (1999) for more
details.

The data points, either cluster points or outliers, have
coordinates in the range [0, 100]. Outliers amount to 5%
and are distributed uniformly at random throughout the
entire space. The algorithm proceeds by defining the

Table 3

so-called anchor points around which clusters will be
distributed, as well as dimensions associated with
each anchor point. The anchor points of clusters are
obtained by generating k uniformly distributed points in a
d-dimensional Euclidean space. The number of dimensions
associated with a cluster is given by the realization of a
Poisson random variable. The dimensions for each cluster
are then chosen using an iterative technique, which is
intended to model the fact that different clusters frequently
share subsets of correlated dimensions. The number of
points in each cluster is determined by first generating
k exponential random variables with mean 1 and then
assigning to each cluster a number of points proportional
to these realizations. The data points for a given cluster i are
generated as follows. The coordinates of the points on the
noncluster dimensions are generated uniformly at random,
the coordinates of the points projected onto a cluster dimen-
sion j follow a normal distribution with the mean at the
respective coordinate of the anchor point, and with the
variance given by (s,j-r)z, where r is a fixed spread para-
meter and s;; is a scale factor chosen from [1, s] uniformly at
random. We use r = s = 2 in our data generation.

We design two classes of the experiments. In the first
class, we use input data files where all clusters are generated
in the same number of dimensions, but in different
subspaces. In the second class, we use input data files
containing clusters generated in different number of dimen-
sions. We report below our results for one experiment in
each class, but we emphasize that similar results hold for
other experiments we have carried out. In both experiments
reported below, we use input data files with 10,000 data
points and number of clusters k=15. The first input file
has data points in a 20-dimensional space, and all its five
clusters have the same number of associated dimensions,
seven, but in different subspaces. The second input file
has data points in a 100-dimensional space, and its five
clusters were respectively generated in 29, 23, 15, 26,
33-dimensional subspaces. Tables 5 and 6 show the

Simulation by ART2-A with Dayhoff pre-process of data for a data set of eight patterns, where vigilance p = 0.8, 0.9, 0.95, 0.99, respectively. The learning rate

is 0.1, and the threshold 68 = 0.05. The data in the same cell are in a cluster

p=0.38

p =0.95 p=0.99

1 2 3 0 9.22 1 2 3 0 9.22

1 2 3 0 9.22 1 2 3 0 9.22

1 2 1 1 9.59 1 2 3 4 8.31

1 2 1 5 8.25 4 3 2 2 8.12 1 2 3 4 8.31 1 2 1 5 8.25
1 2 1 1 9.59 1 2 3 4 8.31 1 2 1 5 8.25 1 2 1 1 9.59
4 3 2 2 8.12 1 2 1 5 8.25 2 3 2 3 8.54 4 3 2 2 8.12
2 3 2 3 8.54 2 3 2 3 8.54 4 3 2 2 8.12 4 3 2 7 4.58
4 3 2 7 4.58 4 3 2 7 4.58 4 3 2 7 4.58 2 3 2 3 8.54

2 3 2 9 1.00 2 3 2 9 1.00

2 3 2 9 1.00 2 3 2 9 1.00
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Simulation by PROCLUS with different numbers of clusters k and average dimensions / for a data set of eight patterns. The points in the same cell are in a
cluster, and the data points below the dotted delimitation line in each cell represent the projected subspaces associated with each cluster: 1 denotes the
corresponding dimension is in the associated subspace, and 0 denotes the corresponding dimension is not in the associated subspace. Simulation indicates the

dependence of clustering results on the choice of input parameters

k=21=2 k=31=3 k=41=3 k=51=34 k=51=4
1 2 3 0 2 3 2 3 1 2 3 0 1 2 3 0 1 2 3 0
1 2 3 4 2 3 2 9 1 2 3 4 1 2 3 4 1 2 3 4
1 , 1 X 11 ...... A 0 ...... A A 1 0 ...... A e 1 ..... O ...... A A A ]..
1 2 1 1 4 3 2 2 4 3 2 2 4 3 2 2 4 3 2 2
ll ..... O .... 0 4 3 2 7 4 3 2 7 4 3 2 7 4 3 2 7
p ; 5 ; 111 ..... O ...... AR AR 1 0 ...... A R 1 ..... 0 ...... o N o 1 .
4 3 2 7 1 2 3 0 1 2 1 5 1 2 1 5 1 2 1 5
2 3 2 3 1 2 3 4 1 2 1 1 .1 ””” 1 .... 1 ”””” 1 1 2 1 1
) X ) . 1 , 1 X 1 ..... 1 ..... 1 ..... 0 ; ; , ) 1111
011 ..... 0 1 2 1 1 2 3 2 3 1 ...... L L 1 2 3 2 3
.1 ...... A 1 0 , X ) . ; X ; ; 1111
.1 ...... e R 0 , . ) . ; ; ; 5
.] ...... 1 ...... ARRRR 0 ..... 1 ..... 1 ..... 1 ..... 1

associated dimensions and the number of data points of each
cluster in the first and second input files, respectively.

In both experiments, the data points are presented in
random order. In order to test the degree of dependence of
our results on the vigilance parameter p and the distance
parameter o, we perform our simulations with different
values of py and o. Note that we only use the basic PART
algorithm in these simulations, namely we do not increase
the vigilance p and do Steps 3-7 of the PART tree algo-
rithm only one time. Small clusters are treated as outliers
because they usually consist of some random points and
outliers. We report the results and comparisons, with
emphasis on four different aspects: number of clusters
found; dimensions found; centers of clusters found; the
contingency table (see Hubert & Arabie, 1985) of original
clusters (also called input clusters) and clusters found (also
called output clusters).

Table 5
Dimensions and numbers of data points of input clusters for a data set in a
20-dimensional space (the first data file)

Input Dimensions Points
1 3,4,7,9, 14, 16, 17 2139
2 3,4,7,12, 13, 14, 17 2328
3 4,6,11, 13, 14,17, 19 1824
4 4,7,9,13, 14, 16, 17 1573
5 3,4,9,12, 14, 16, 17 1636
Outliers - 500

We first consider the experiment on the first input data
file. Tables 7 and 8 and Fig. 6 show the simulation results
with pg =4 and o = 0.18; Tables 9 and 10 and Fig. 7 show
the simulation results with po =5 and o = 0.17; and Tables
11 and 12 and Fig. 8 show the simulation results with py =5
and o = 0.26. Note that our PART algorithm succeeds in
finding the exact number of original clusters and in finding
almost exact centers of all original clusters with negligible
errors. The dimensions found are not identical to those of
the original clusters, but these found dimensions are
contained as subsets of the corresponding dimensions of
the original clusters. These subsets are sufficiently large so

Table 6
Dimensions and numbers of data points of input clusters for a data set in a
100-dimensional space (the second data file)

Input Dimensions Points

1 13,16,21,22,32,35,36,39,41,42,47,52,54,59, 2139
61,63,65,68,74,76,77,79, 83, 87,92, 94, 96, 98,
99

2 1,2,5,8,10, 12, 13, 18, 22, 23, 24, 26, 27, 28, 36, 2328
39, 41, 43, 48, 50, 57, 58, 88

3 3,4,6,10, 13,17, 18, 23, 30, 31, 35, 40, 66, 68,89 1824

4 2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 25, 1573
39, 46, 48, 61, 62, 75, 79, 80, 95, 99

5 3,4,5,8,10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 1636
26,30, 31, 36, 38,42, 45, 48, 49, 56, 57, 61, 62, 65,
84, 85, 88, 98

Outliers  — 500
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Fig. 5. PART simulation for a data set of 12 patterns, where po=1,p,=1,0=0.1,L=2,e=1, a = 0.1, 6 = 0. The data points below the delimitation line
in each rectangular box represent the projected subspaces associated with each cluster. 1 denotes the corresponding dimension is in the associated subspace,
and O denotes the corresponding dimension is not in the associated subspace.

that, after further reassignment described below, we are
able to reproduce the original clusters from the found
cluster centers, the found number of clusters and the
found dimensions.

Note that when py=735 and o = 0.26, the output has a
relatively large percentage of outliers. However, the found
centers coincide with those of the original clusters. There-
fore, we can reassign all data points according to their
distances to the centers in the subspaces of the dimensions
found. Table 13 shows the result of the reassignment. Note
that the original input outliers are also reassigned using the
same rule. Results of reassignment are similar in other two

Table 7
Dimensions and numbers of the data points of output clusters for the first
data file when py=4 and 0 = 0.18

Found Dimensions Points
1 4,7,9,17 2089
2 3,12, 13, 14 2315
3 6,11, 13, 14 1809
4 7,9, 14, 17 1473
5 9,12, 14, 16 1576
Outliers - 738

choices of parameters: (po=4, o =0.18) and (po=235,
o =0.17). It is natural that the set of output outliers
becomes large if o is small. One may wonder, however,
why the size of the set of output outliers increases when o
is increased from 0.17 to 0.26, while py=15. Our experi-
ments show that when o is relatively large, some data points
can be incorrectly classified to a cluster during a trial, and
this changes the templates of the corresponding F, node and,
therefore, changes the results of subsequent trials.

We also carried out simulations with other values of
parameters py and o, and we observed that the number of

Table 8

Contingency table of input clusters and output clusters for the first data file
when py =4, o = 0.18. Entry (i, j) denotes the number of data points that
are common to output cluster i and input cluster j

Output/input 1 2 3 4 5 Outliers  Sums

1 2089 0 0 0 0 0 2089
2 0 2315 0 0 0 0 2315
3 0 0 1808 0 0 1 1809
4 0 0 0 1473 0 0 1473
5 0 0 0 0 1575 1 1576
Outliers 50 13 16 100 61 498 738
Sums 2139 2328 1824 1573 1636 500 10,000
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Fig. 6. Comparison of centers of output clusters with original clusters in associated dimensions for the first data file when po =4 and o = 0.18. + denotes the
coordinate of the center of an original cluster, and X denotes the coordinate of the center of an output cluster, in the corresponding dimension.

Table 9

Dimensions and numbers of data points of output clusters for the first data

file when py =5 and o =0.17

clusters and the center of each cluster can be correctly found
with various (py, ) in a wide range. Moreover, we found

that the final clustering results, after reassignment, are all
identical and coincide with the original input clusters,

Found Dimensions Points
1 4,79,16,17 2130
2 3,4,12,13, 14 2231
3 6, 11,13, 14,19 1422
4 7,9, 13, 14, 17 1273
5 3,9,12,16, 17 1618
Outliers - 1326

except some differences in the assignment of the original
input outliers. Therefore, we believe that PART algorithm is
quite robust to the choice of parameters p, and o.

We obtained similar observations from our simulations
on the second input data file. Tables 14 and 15 and Fig. 9
show the simulation results with pg = 10 and o = 0.16, and
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Table 10 Table 11
Contingency table of input clusters and output clusters for the first data file Dimensions and numbers of data points of output clusters for the first data
when py =15, 0 =0.17. Entry (i, j) denotes the number of data points that file when py =15 and o = 0.26
are common to output cluster 7 and input cluster j
Found Dimensions Points
Output/input 1 2 3 4 5 Outliers  Sums
1 4,7,14,16,17 1587
1 2130 0 0 0 0 0 2130 2 3,7,12,13, 17 2296
2 0 2231 0 0 0 0 2231 3 4,6,11, 13, 14 1391
3 0 0 1422 0 0 0 1422 4 7,9,13, 14, 17 1494
4 0 0 0 1273 0 0 1273 5 3,9,12, 16, 17 1368
5 0 0 0 0 1618 0 1618 Outliers - 1864
Outliers 9 97 402 300 18 500 1326
Sums 2139 2328 1824 1573 1636 500 10,000
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Fig. 7. Comparison of centers of output clusters with original clusters in associated dimensions for the first data file when py =5 and o = 0.17. + denotes the
coordinate of the center of an original cluster, and X denotes the coordinate of the center of an output cluster, in the corresponding dimension.
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Table 12

Contingency table of input clusters and output clusters for the first data file
when py =15, 0 =0.26. Entry (i, j) denotes the number of data points that

are common to output cluster 7 and input cluster j
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Tables 16 and 17 and Fig. 10 show the simulation results
with po=8 and o = 0.15.

Tables 18 and 19 show the first five largest output clusters
by using Fuzzy ART algorithm (Carpenter, Grossberg &

Output/input 1 2 3 4 5 Outliers ~ Sums Rosen, 1991b) for the first data file with vigilance p = 0.2
and 0.3, respectively. Clearly, there are heavy overlaps
1 1587 0 0 0 0 0 1587 . .
9 0 229 0 0 0 0 2296 among different clusters. Table 20 shows the first six largest
3 0 0 1389 0 0 2 1391 output clusters by using Fuzzy ART algorithm for the first
4 0 0 0 1494 0 0 1494 data file with vigilance p = 0.4. The clustering results are
5 0 0 0 0 1368 0 1368 reasonably good. However, the number of data points in
Outliers %2 32 435 79 268 498 1864 each cluster is small and, hence, the set of outliers is
Sums 2139 2328 1824 1573 1636 500 10,000
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Fig. 8. Comparison of centers of output clusters with original clusters in associated dimensions for the first data file when po = 5 and oo = 0.26. + denotes the
coordinate of the center of an original cluster, and X denotes the coordinate of the center of an output cluster, in the corresponding dimension.
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Table 13
Reassignment according to the found centers of output clusters and the
found dimensions for the first data file when pg=35, o =0.26

Output/input 1 2 3 4 5 Outliers  Sums

1 2139 0 0 0 0 120 2259
2 0 2328 0 0 0 86 2414
3 0 0 1824 0 0 50 1874
4 0 0 0 1573 0 181 1754
5 0 0 0 0 1636 63 1699
Sums 2139 2328 1824 1573 1636 500 10,000

huge. Note also that the first five largest output clusters
correspond to only four out of five original input clusters.
More precisely, the input cluster 2 is divided into two clus-
ters in the first five largest output clusters. When the vigi-
lance parameter p = 0.5, each output cluster generated by
Fuzzy ART algorithm consists of a small number of data
points and, hence, no real cluster is formed. For the second
input data file, we are unable to find the proper vigilance
parameter p to make Fuzzy ART work. For example, when
p = 0.4,0.3 and 0.2, each output cluster consists of very few
data points, and when p = 0.1 the original whole data set is
approximately divided into two large clusters. Again, we
emphasize that Fuzzy ART and other ART modules have
been proved to be very effective in clustering data sets based
on similarity of points in the full space. Fuzzy ART does not
generate satisfactory clustering results for the data sets here
because, for these data sets, dimension similarity is an
essential feature.

5. Conclusions

Most clustering algorithms do not work efficiently for
data sets in high dimensional spaces. Due to the inherent
sparsity of data points, it is not feasible to find interesting
clusters in the original full space of all dimensions, but
pruning off dimensions in advance, as most feature selection
procedures do, may lead to significant loss of information
and, thus, render the clustering results unreliable.

We propose a new neural network architecture Projective

Table 14
Dimensions and numbers of the data points of output clusters for the second
data file when po =10 and o =0.16

Found Dimensions Points

1 13,41, 65, 68, 74, 76, 83, 94, 98, 2006
99

2 1, 12, 13, 18, 23, 27, 39, 48, 58, 2325
88

3 3,4,6, 10, 17, 18, 23, 30, 31, 35 1804

4 2,5,15,16, 39, 46,61,75,79, 80 1265

5 8, 12, 16, 21, 30, 45, 62, 84, 85, 1628
88

Outliers - 972

Table 15

Contingency table of input clusters and output clusters for the second data
file when p, =10, o0 = 0.16. Entry (i, j) denotes the number of data points
that are common to output cluster # and input cluster j

Output/input 1 2 3 4 5 Outliers ~ Sums

1 2006 0 0 0 0 0 2006
2 0 2325 0 0 0 0 2325
3 0 0 1804 0 0 0 1804
4 0 0 0 1265 0 0 1265
5 0 0 0 0 1628 0 1628
Outliers 133 3 20 308 8 500 972
Sums 2139 2328 1824 1573 1636 500 10,000

Adaptive Resonance Theory (PART) in order to provide a
solution to this feasibility—reliability dilemma in clustering
data sets in high dimensional spaces. The goal of PART is to
find projected clusters, each of which consists of a subset C
of data points together with a subset D of dimensions such
that the points in C are closely correlated in the subspace of
dimensions D. This idea of projected clustering and an
algorithm PROCLUS were proposed by Aggarwal et al.
(1999). Unfortunately, the PROCLUS algorithm seems to
be sensitive to the choice of two input parameters: the
number of clusters and the average dimension, and selecting
these parameters in advance imposes real challenge for the
user. This is illustrated by our simulations, reported in
Section 4, on even some small data sets.

The basic architecture of the proposed PART is similar to
that of ART neural networks which have been shown to be
very effective in self-organizing stable recognition codes in
real time in response to arbitrary sequences of input
patterns. However, ART focuses on similarity of patterns
in the full space of all dimensions and, thus, may fail to find
patterns in the data sets in high dimensional spaces where
dimensional similarity is an essential part of the patterns.
This is illustrated in our simulations reported in Section 4.
The main new development in PART is the introduction of a
selective output signaling mechanism which allows a gener-
ated signal at a node in the input layer to be transmitted to a
node in the clustering layer only when the corresponding
top-down weight is similar to the generated signal. Like
ART, the vigilance conditions in PART control the degree
of similarity of patterns in the same cluster, but the similar-
ity measurement in PART is closely related to the subspaces
involved. In particular, the degree of similarity of patterns

Table 16
Dimensions and numbers of the data points of output clusters for the second
data file when py =8 and o = 0.15

Found Dimensions Points
1 13, 65, 68, 74, 76, 83,94, 96 2114
2 10, 13, 18, 22, 39, 48, 57, 88 2101
3 3,4,6, 10, 18, 30, 31, 35 1801
4 2,5,6,10, 11, 14, 39, 80 1501
5 19, 20, 26, 31, 48, 61, 62, 65 1533

Outliers - 950
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Fig. 9. Comparison of centers of output clusters with original clusters in associated dimensions for the first data file when py = 10 and o = 0.16. + denotes the
coordinate of the center of an original cluster, and X denotes the coordinate of the center of an output cluster, in the corresponding dimension.

Table 17

Contingency table of input clusters and output clusters for the second data Table 18

file when py =8, o = 0.15. Entry (i, j) denotes the number of data points Fuzzy ART simulation for the first data file, where the choice parameter

that are common to output cluster i and input cluster j a = 0.1, the learning rate 8 = 0.1, and vigilance parameter p = 0.2. Entry
(i, j) denotes the number of data points that are common to output cluster i

Output/input 1 2 3 4 5 Outliers  Sums and input cluster j

1 2114 0 0 0 0 0 2114 Output/input 1 2 3 4 5 Outliers ~ Sums

2 0 2081 0 0 20 0 2101

3 0 0 1801 0 0 0 1801 1 894 940 365 575 455 84 3313

4 0 0 0 1501 0 0 1501 2 333 360 366 170 328 25 1582

5 0 0 0 0 1533 0 1533 3 111 199 163 71 0 9 553

Outliers 25 247 23 72 83 500 950 4 44 72 126 118 45 7 412

Sums 2139 2328 1824 1573 1636 500 10,000 5 74 92 47 50 96 9 368
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Fig. 10. Comparison of centers of output clusters with original clusters in associated dimensions for the second data file when p, = 8 and o = 0.15. + denotes

the coordinate of the center of an original cluster, and X denotes the coordinate of the center of an output cluster, in the corresponding dimension.

Table 19

Fuzzy ART simulation for the first data file, where the choice parameter
a = 0.1, the learning rate 8 = 0.1, and vigilance parameter p = 0.3. Entry
(i, j) denotes the number of data points that are common to output cluster i

and input cluster j

for a committed node is controlled by both vigilance
parameter and distance parameter which control the size
of dimensions of the projected subspaces and the degree

of similarity in a specific dimension involved, respectively.

These vigilance and distance parameters are the only

Output/input 1 2 3 4 5 Outliers ~ Sums
1 0 0 807 47 0 0 854
2 342 207 14 164 52 5 784
3 6 718 0 11 0 0 735
4 0 0 0 348 260 O 608
5 212 26 0 0 0 0 238

required input parameters for the PART algorithm, and

our simulations on high dimensional synthetic data show
that the clustering results obtained by the PART algorithm
are very robust to the choice of these input parameters. In
particular, we observed that the PART algorithm, with a
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Table 20

Fuzzy ART simulation for the first data file, where the choice parameter
a = 0.1, the learning rate 8 = 0.1, and vigilance parameter p = 0.4. Entry
(i, j) denotes the number of data points that are common to output cluster i
and input cluster j. Note that the number of data points in each of the first six
largest output clusters is already small. The remaining clusters are all so
small that all their points should be classified as outliers. This generates a
huge set of outliers

Output/input 1 2 3 4 5 Outliers ~ Sums
1 0 0 950 0 0 0 950
2 0 544 0 0 0 0 544
3 0 0 0 0 540 O 540
4 0 0 0 509 0o 0 509
5 0 460 0 0 0 0 460
6 412 0 0 0 0o 0 412

wide range of input parameters, enables us to find the
correct number of clusters, the correct centers of the clusters
and the sufficiently large subsets of dimensions where clus-
ters are formed, so that we are able to fully reproduce the
original input clusters after a reassignment procedure.
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